Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Emerg Med ; 23(1): 4, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36635638

RESUMEN

BACKGROUND: The pandemic has impacted both patients infected by the SARS-CoV-2 virus and patients who seek emergency assistance due to other health issues. Changes in emergency demands are expected to have occurred during the pandemic, the objective of this investigation is to characterize the changes in ambulance emergency demands during the first year of the COVID-19 pandemic in the Vaud State of Switzerland. The goal of this research is to identify the collateral effects of the COVID-19 pandemic on emergency demands. To do so, this study quantifies the differences in health issues, level of severity, and patients' sociodemographic characteristics (age, location, gender) prior to and during the outbreak. METHOD: This is a retrospective, descriptive and comparative statistical analysis of all ambulance emergency missions from 2018 to 2020 (n = 107,150) in the State of Vaud in Switzerland. Variables analyzed were the number of ambulance missions, patient age and gender, health issues, severity (NACA scores), number of non-transports, mission times and locations. Variables were compared between prepandemic and pandemic situations across years and months. Comparative analysis used bivariate analysis, χ2 test, Student's t test, and Mann‒Whitney U test. RESULTS: The pandemic has had two major impacts on the population's emergency demands. The first appears to be due to COVID-19, with an increase in respiratory distress cases that doubled in November 2020. The second relates to the implementation of lockdown and quarantine measures for the population and the closures of restaurants and bars. These might explain the decrease in both the number of traumas and intoxications, reaching more than 25% and 28%, respectively. An increase in prehospital emergency demands by the older population, which accounted for 53% of all demands in 2020, is measured. CONCLUSION: Collateral effects occurred during 2020 and were not only due to the pandemic but also due to protective measures deployed relative to the population. This work suggests that more targeted reflections and interventions concerning the most vulnerable group, the population of people 65 and older, should be of high priority. Gaining generalizable knowledge from the COVID-19 pandemic in prehospital settings is critical for the management of future pandemics or other unexpected disasters.


Asunto(s)
Ambulancias , COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias , Cuarentena , Estudios Retrospectivos , Control de Enfermedades Transmisibles
2.
Front Public Health ; 10: 1016169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568782

RESUMEN

Background: The need for effective public health surveillance systems to track virus spread for targeted interventions was highlighted during the COVID-19 pandemic. It spurred an interest in the use of spatiotemporal clustering and genomic analyses to identify high-risk areas and track the spread of the SARS-CoV-2 virus. However, these two approaches are rarely combined in surveillance systems to complement each one's limitations; spatiotemporal clustering approaches usually consider only one source of virus transmission (i.e., the residential setting) to detect case clusters, while genomic studies require significant resources and processing time that can delay decision-making. Here, we clarify the differences and possible synergies of these two approaches in the context of infectious disease surveillance systems by investigating to what extent geographically-defined clusters are confirmed as transmission clusters based on genome sequences, and how genomic-based analyses can improve the epidemiological investigations associated with spatiotemporal cluster detection. Methods: For this purpose, we sequenced the SARS-CoV-2 genomes of 172 cases that were part of a collection of spatiotemporal clusters found in a Swiss state (Vaud) during the first epidemic wave. We subsequently examined intra-cluster genetic similarities and spatiotemporal distributions across virus genotypes. Results: Our results suggest that the congruence between the two approaches might depend on geographic features of the area (rural/urban) and epidemic context (e.g., lockdown). We also identified two potential superspreading events that started from cases in the main urban area of the state, leading to smaller spreading events in neighboring regions, as well as a large spreading in a geographically-isolated area. These superspreading events were characterized by specific mutations assumed to originate from Mulhouse and Milan, respectively. Our analyses propose synergistic benefits of using two complementary approaches in public health surveillance, saving resources and improving surveillance efficiency.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Pandemias , Control de Enfermedades Transmisibles , Genómica , Análisis por Conglomerados
3.
BMC Emerg Med ; 21(1): 63, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030660

RESUMEN

BACKGROUND: Population ageing and increased prevalence of chronic diseases result in the emergence of new demands in prehospital care. The prehospital system is facing an increase of cases without acute threat to life (so-called "non-urgent"), which generates tension due to a higher number of admissions to emergency departments and a greater use of prehospital resources. Our aim is to understand this transition in prehospital activities and to delineate the primary missions performed by paramedics in 2018 with a focus on the population concerned, the severity of cases encountered and the typology of health issues. METHOD: The study is retrospective, and descriptive, using a statistical description of 35,188 primary missions realized in 2018 in the State of Vaud (Switzerland). The characteristics taken into consideration are the age and gender of patients, as well as the health issue, the severity of cases based on National Advisory Committee for Aeronautics score (NACA score), and the time and place of intervention. RESULTS: The results describe the primary missions in the State of Vaud in 2018 and show that 87% of missions concern "non-urgent" situations (without acute threat to life). Over half of patients are 65 or older, the highest proportion of health issues, 49%, are medical and only 23% of missions are for traumas. Mission related to mental health issues reach 7% and those for intoxication 6%. Most missions take place between 7:00 am and 6:00 pm (67%), and around 12% of missions lead to the non-transport of the patient. CONCLUSION: The prehospital sector is confronted with a major transition in terms of patient care. An increase of non-urgent cases is observed, associated with the care of persons aged 65 or more. Our results question the adequacy between the needs in terms of prehospital care and the paramedic profession as it is currently defined, as well as the place of this profession within the health network. Reflecting upon the role of paramedics with respect to the socio-demographic evolution of populations appears necessary, to analyse the adequacy of the paramedics' skills to respond to the current needs.


Asunto(s)
Técnicos Medios en Salud , Servicios Médicos de Urgencia , Necesidades y Demandas de Servicios de Salud , Confidencialidad , Servicios Médicos de Urgencia/estadística & datos numéricos , Humanos , Estudios Retrospectivos , Suiza
4.
Sci Total Environ ; 787: 147483, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000545

RESUMEN

To understand the geographical and temporal spread of SARS-CoV-2 during the first documented wave of infection in the state of Vaud, Switzerland, we analyzed clusters of positive cases using the precise residential location of 33,651 individuals tested (RT-PCR) between January 10 and June 30, 2020. We used a prospective Poisson space-time scan statistic (SaTScan) and a Modified Space-Time Density-Based Spatial Clustering of Application with Noise (MST-DBSCAN) to identify both space-time and transmission clusters, and estimated cluster duration, transmission behavior (emergence, growth, reduction, etc.) and relative risk. For each cluster, we computed the number of individuals, the median age of individuals and their viral load. Among the 1684 space-time clusters identified, 457 (27.1%) were significant (p ≤ 0.05), such that they harbored a higher relative risk of infection within the cluster than compared to regions outside the cluster. Clusters lasted a median of 11 days (IQR 7-13) and included a median of 12 individuals per cluster (IQR 5-20). The majority of significant clusters (n = 260; 56.9%) had at least one person with an extremely high viral load (>1 billion copies/ml). Those clusters were considerably larger (median of 17 infected individuals, p < 0.001) than clusters with individuals showing a viral load below 1 million copies/ml (median of three infected individuals). The highest viral loads were found in clusters with the lowest average age group considered in the investigation, while clusters with the highest average age had low to middle viral load. In 20 significant clusters, the viral load of the three first cases was below 100,000 copies/ml, suggesting that subjects with fewer than 100,000 copies/ml may still be contagious. Notably, the dynamics of transmission clusters made it possible to identify three diffusion zones, which predominantly differentiated between rural and urban areas, the latter being more prone to persistence and expansion, which may result in the emergence of new clusters nearby. The use of geographic information is key for public health decision makers in mitigating the spread of the SARS-CoV-2 virus. This study suggests that early localization of clusters may help implement targeted protective measures limiting the spread of the virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estudios Prospectivos , Suiza/epidemiología , Carga Viral
5.
Pilot Feasibility Stud ; 6(1): 171, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33292718

RESUMEN

BACKGROUND: The clinical decisions of emergency department triage nurses need to be of the highest accuracy. However, studies have found repeatedly that these nurses over- or underestimate the severity of patient health conditions. This has major consequences for patient safety and patient flow management. Workplace distractors such as noise and task interruptions have been pointed to as factors that might explain this inaccuracy. The use of a serious game reproducing the work environment during triage affords the opportunity to explore the impact of these distractors on nurse emergency triage accuracy, in a safe setting. METHODS/DESIGN: A pilot study with a factorial design will be carried out to test the acceptability and feasibility of a serious game developed specifically to simulate the triage process in emergency departments and to explore the primary effects of distractors on nurse emergency triage accuracy. Eighty emergency nurses will be randomized into four groups: three groups exposed to different distractors (A, noise; B, task interruptions; C, noise and task interruptions) and one control group. All nurses will have to complete 20 clinical vignettes within 2 h. For each vignette, a gold standard assessment will be determined by experts. Pre-tests will be conducted with clinicians and certified emergency nurses to evaluate the appeal of the serious game. DISCUSSION: Study results will inform the design of large-scale investigations and will help identify teaching, training, and research areas that require further development.

6.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33067199

RESUMEN

The tick Ixodes ricinus is the vector of various pathogens, including Chlamydiales bacteria, which potentially cause respiratory infections. In this study, we modeled the spatial distribution of I. ricinus and associated Chlamydiales over Switzerland from 2009 to 2019. We used a total of 2,293 ticks and 186 Chlamydiales occurrences provided by a Swiss Army field campaign, a collaborative smartphone application, and a prospective campaign. For each tick location, we retrieved from Swiss federal data sets the environmental factors reflecting the topography, climate, and land cover. We then used the Maxent modeling technique to estimate the suitability of particular areas for I. ricinus and to subsequently build the nested niche of Chlamydiales bacteria. Results indicate that I. ricinus habitat suitability is determined by higher temperature and normalized difference vegetation index (NDVI) values, lower temperature during the driest months, and a higher percentage of artificial and forest areas. The performance of the model was improved when extracting the environmental variables for a 100-m radius buffer around the sampling points and when considering the climatic conditions of the 2 years previous to the sampling date. Chlamydiales bacteria were favored by a lower percentage of artificial surfaces, drier conditions, high precipitation during the coldest months, and short distances to wetlands. From 2009 to 2018, we observed an extension of areas suitable to ticks and Chlamydiales, associated with a shift toward higher altitude. The importance of considering spatiotemporal variations in the environmental conditions for obtaining better prediction was also demonstrated.IMPORTANCEIxodes ricinus is the vector of pathogens including the agent of Lyme disease, the tick-borne encephalitis virus, and the less well-known Chlamydiales bacteria, which are responsible for certain respiratory infections. In this study, we identified the environmental factors influencing the presence of I. ricinus and Chlamydiales in Switzerland and generated maps of their distribution from 2009 to 2018. We found an important expansion of suitable areas for both the tick and the bacteria during the last decade. Results also provided the environmental factors that determine the presence of Chlamydiales within ticks. Distribution maps as generated here are expected to bring valuable information for decision makers in controlling tick-borne diseases in Switzerland and establishing prevention campaigns. The methodological framework presented could be used to predict the distribution and spread of other host-pathogen pairs to identify environmental factors driving their distribution and to develop control or prevention strategies accordingly.


Asunto(s)
Distribución Animal , Chlamydiales/aislamiento & purificación , Ecosistema , Interacciones Microbiota-Huesped , Ixodes/microbiología , Aplicaciones Móviles , Animales , Modelos Biológicos , Estaciones del Año , Teléfono Inteligente , Análisis Espacio-Temporal , Suiza
7.
Ecol Lett ; 20(8): 1014-1024, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28662544

RESUMEN

Host shifts can cause novel infectious diseases, and is a key process in diversification. Disentangling the effects of host shift vs. those of cospeciation is non-trivial as both can result in phylogenic congruence. We develop a new framework based on network analysis and Approximate Bayesian Computation to quantify host shift and cospeciation rates in host-parasite systems. Our method enables estimation of the expected time to the next host shift or cospeciation event. We then apply it to avian haemosporidian parasite systems and to the pocket gophers-chewing lice system, and demonstrate that both host shift and cospeciation can be reliably estimated by our method. We confirm that host shifts have shaped the evolutionary history of avian haemosporidian parasites and have played a minor role in the gopher-chewing lice system. Our method is promising for predicting the rate of potential host shifts and thus the emergence of novel infectious diseases.


Asunto(s)
Aves , Filogenia , Animales , Teorema de Bayes , Evolución Biológica , Interacciones Huésped-Parásitos
8.
G3 (Bethesda) ; 6(1): 107-20, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26546308

RESUMEN

Ease of worldwide travel provides increased opportunities for organisms not only to colonize new environments but also to encounter related but diverged populations. Such events of reconnection and secondary contact of previously isolated populations are widely observed at different time scales. For example, during the quaternary glaciation, sea water level fluctuations caused temporal isolation of populations, often to be followed by secondary contact. At shorter time scales, population isolation and reconnection of viruses are commonly observed, and such events are often associated with epidemics and pandemics. Here, using coalescent theory and simulations, we describe the temporal impact of population reconnection after isolation on nucleotide differences and the site frequency spectrum, as well as common summary statistics of DNA variation. We identify robust genomic signatures of population reconnection after isolation. We utilize our development to infer the recent evolutionary history of human immunodeficiency virus 1 (HIV-1) in Asia and South America, successfully retrieving the successive HIV subtype colonization events in these regions. Our analysis reveals that divergent HIV-1 subtype populations are currently admixing in these regions, suggesting that HIV-1 may be undergoing a process of homogenization, contrary to popular belief.


Asunto(s)
Evolución Molecular , Genoma Viral , Genómica , VIH-1/genética , Variación Genética , Genética de Población , Genómica/métodos , Genotipo , Infecciones por VIH/virología , Humanos , Modelos Teóricos , Virus Reordenados , Recombinación Genética
9.
Mol Ecol ; 24(10): 2507-20, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25827243

RESUMEN

Over the past two decades, an increasing amount of phylogeographic work has substantially improved our understanding of African biogeography, in particular the role played by Pleistocene pluvial-drought cycles on terrestrial vertebrates. However, still little is known on the evolutionary history of semi-aquatic animals, which faced tremendous challenges imposed by unpredictable availability of water resources. In this study, we investigate the Late Pleistocene history of the common hippopotamus (Hippopotamus amphibius), using mitochondrial and nuclear DNA sequence variation and range-wide sampling. We documented a global demographic and spatial expansion approximately 0.1-0.3 Myr ago, most likely associated with an episode of massive drainage overflow. These events presumably enabled a historical continent-wide gene flow among hippopotamus populations, and hence, no clear continental-scale genetic structuring remains. Nevertheless, present-day hippopotamus populations are genetically disconnected, probably as a result of the mid-Holocene aridification and contemporary anthropogenic pressures. This unique pattern contrasts with the biogeographic paradigms established for savannah-adapted ungulate mammals and should be further investigated in other water-associated taxa. Our study has important consequences for the conservation of the hippo, an emblematic but threatened species that requires specific protection to curtail its long-term decline.


Asunto(s)
Evolución Molecular , Flujo Génico , Genética de Población , Mamíferos/genética , África , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Haplotipos , Modelos Genéticos , Datos de Secuencia Molecular , Filogeografía , Dinámica Poblacional , Análisis de Secuencia de ADN
10.
Curr Opin HIV AIDS ; 10(2): 84-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25565174

RESUMEN

PURPOSE OF REVIEW: An improved understanding of how recombination affects the evolutionary history of HIV is crucial to understand its current and future evolution. The present review aims to disentangle the manifold effects of recombination on HIV by discussing its effects on the evolutionary history and the adaptive potential of HIV in the context of concepts from evolutionary genetics and genomics. RECENT FINDINGS: The increasing occurrence of secondary contacts between divergent subtype populations (during coinfection) results in increased observations of recombinants worldwide. Recombination is heterogeneous along the HIV genome. Consequences of recombination of HIV evolution are, in combination with other demographic processes, expected to either homogenize the genetic composition of HIV populations (homogenization) or provide the potential for novel adaptations (diversification). New methods in population genomics allow deep characterization of recombinant genome (the segment composition and origin) and their evolutionary trajectories. SUMMARY: HIV recombinants increase worldwide and invade geographical regions where pure subtypes were previously predominant. This trend is expected to continue in the future, as ease to travel worldwide increases opportunities for recombination between divergent HIV strains. While the effects of recombination in HIV are much researched, more effort is required to characterize current HIV recombinant composition and dynamics. This can be achieved with new population genetic and genomic methods.


Asunto(s)
Evolución Molecular , Infecciones por VIH , VIH-1/genética , Recombinación Genética/genética , Genética de Población , Infecciones por VIH/genética , Infecciones por VIH/virología , Humanos
11.
Proc Biol Sci ; 281(1794): 20141369, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25253456

RESUMEN

Major climatic and geological events but also population history (secondary contacts) have generated cycles of population isolation and connection of long and short periods. Recent empirical and theoretical studies suggest that fast evolutionary processes might be triggered by such events, as commonly illustrated in ecology by the adaptive radiation of cichlid fishes (isolation and reconnection of lakes and watersheds) and in epidemiology by the fast adaptation of the influenza virus (isolation and reconnection in hosts). We test whether cyclic population isolation and connection provide the raw material (standing genetic variation) for species evolution and diversification. Our analytical results demonstrate that population isolation and connection can provide, to populations, a high excess of genetic diversity compared with what is expected at equilibrium. This excess is either cyclic (high allele turnover) or cumulates with time depending on the duration of the isolation and the connection periods and the mutation rate. We show that diversification rates of animal clades are associated with specific periods of climatic cycles in the Quaternary. We finally discuss the importance of our results for macroevolutionary patterns and for the inference of population history from genomic data.


Asunto(s)
Evolución Biológica , Especiación Genética , Variación Genética , Aislamiento Reproductivo , Adaptación Biológica/genética , Migración Animal , Animales , Cambio Climático , Modelos Genéticos , Filogenia
12.
Am Nat ; 183(5): 612-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24739194

RESUMEN

Disentangling the mechanisms mediating the coexistence of habitat specialists and generalists has been a long-standing subject of investigation. However, the roles of species traits and environmental and spatial factors have not been assessed in a unifying theoretical framework. Theory suggests that specialist species are more competitive in natural communities. However, empirical work has shown that specialist species are declining worldwide due to habitat loss and fragmentation. We addressed the question of the coexistence of specialist and generalist species with a spatially explicit metacommunity model in continuous and heterogeneous environments. We characterized how species' dispersal abilities, the number of interacting species, environmental spatial autocorrelation, and disturbance impact community composition. Our results demonstrated that species' dispersal ability and the number of interacting species had a drastic influence on the composition of metacommunities. More specialized species coexisted when species had large dispersal abilities and when the number of interacting species was high. Disturbance selected against highly specialized species, whereas environmental spatial autocorrelation had a marginal impact. Interestingly, species richness and niche breadth were mainly positively correlated at the community scale but were negatively correlated at the metacommunity scale. Numerous diversely specialized species can thus coexist, but both species' intrinsic traits and environmental factors interact to shape the specialization signatures of communities at both the local and global scales.


Asunto(s)
Biota , Fenómenos Ecológicos y Ambientales , Distribución Animal , Ecosistema , Fertilidad , Modelos Biológicos , Dispersión de las Plantas , Análisis Espacial
13.
Theor Popul Biol ; 93: 75-84, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24560956

RESUMEN

Population genetic differentiation characterizes the repartition of alleles among populations. It is commonly thought that genetic differentiation measures, such as GST and D, should be near zero when allele frequencies are close to their expected value in panmictic populations, and close to one when they are close to their expected value in isolated populations. To analyse those properties, we first derive analytically a reference function f of known parameters that describes how important features of genetic differentiation (e.g. gene diversity, proportion of private alleles, frequency of the most common allele) are close to their expected panmictic and isolation value. We find that the behaviour of function f differs according to three distinct mutation regimes defined by the scaled mutation rate and the number of populations. Then, we compare GST and D to f, and demonstrate that their signal of differentiation strongly depends on the mutation regime. In particular, we show that D captures well the variations of genetic diversity when mutation is weak, otherwise it overestimates it when panmixia is not met. GST detects population differentiation when mutation is intermediate but has a low sensitivity to the variations of genetic diversity when mutation is weak. When mutation is strong the domain of sensitivity of both measures are altered. Finally, we also point out the importance of the number of populations on genetic differentiation measures, and provide recommendations for the use of GST and D.


Asunto(s)
Genética de Población , Frecuencia de los Genes , Humanos
14.
Mol Ecol ; 22(14): 3659-65, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24003454

RESUMEN

A workshop recently held at the École Polytechnique Fédérale de Lausanne (EPFL, Switzerland) was dedicated to understanding the genetic basis of adaptive change, taking stock of the different approaches developed in theoretical population genetics and landscape genomics and bringing together knowledge accumulated in both research fields. Indeed, an important challenge in theoretical population genetics is to incorporate effects of demographic history and population structure. But important design problems (e.g. focus on populations as units, focus on hard selective sweeps, no hypothesis-based framework in the design of the statistical tests) reduce their capability of detecting adaptive genetic variation. In parallel, landscape genomics offers a solution to several of these problems and provides a number of advantages (e.g. fast computation, landscape heterogeneity integration). But the approach makes several implicit assumptions that should be carefully considered (e.g. selection has had enough time to create a functional relationship between the allele distribution and the environmental variable, or this functional relationship is assumed to be constant). To address the respective strengths and weaknesses mentioned above, the workshop brought together a panel of experts from both disciplines to present their work and discuss the relevance of combining these approaches, possibly resulting in a joint software solution in the future.


Asunto(s)
Adaptación Fisiológica/genética , Ambiente , Genética de Población/tendencias , Genómica , Variación Genética , Modelos Teóricos , Selección Genética , Programas Informáticos , Suiza
15.
Genetics ; 193(3): 953-71, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23307901

RESUMEN

Genetic diversity is essential for population survival and adaptation to changing environments. Demographic processes (e.g., bottleneck and expansion) and spatial structure (e.g., migration, number, and size of populations) are known to shape the patterns of the genetic diversity of populations. However, the impact of temporal changes in migration on genetic diversity has seldom been considered, although such events might be the norm. Indeed, during the millions of years of a species' lifetime, repeated isolation and reconnection of populations occur. Geological and climatic events alternately isolate and reconnect habitats. We analytically document the dynamics of genetic diversity after an abrupt change in migration given the mutation rate and the number and sizes of the populations. We demonstrate that during transient dynamics, genetic diversity can reach unexpectedly high values that can be maintained over thousands of generations. We discuss the consequences of such processes for the evolution of species based on standing genetic variation and how they can affect the reconstruction of a population's demographic and evolutionary history from genetic data. Our results also provide guidelines for the use of genetic data for the conservation of natural populations.


Asunto(s)
Variación Genética , Migración Humana , Población/genética , Adaptación Biológica/genética , Ecosistema , Humanos , Modelos Genéticos , Aislamiento Reproductivo
16.
Evolution ; 67(2): 501-16, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23356621

RESUMEN

Self-incompatibility (SI), a reproductive system broadly present in plants, chordates, fungi, and protists, might be controlled by one or several multiallelic loci. How a transition in the number of SI loci can occur and the consequences of such events for the population's genetics and dynamics have not been studied theoretically. Here, we provide analytical descriptions of two transition mechanisms: linkage of the two SI loci (scenario 1) and the loss of function of one incompatibility gene within a mating type of a population with two SI loci (scenario 2). We show that invasion of populations by the new mating type form depends on whether the fitness of the new type is lowered, and on the allelic diversity of the SI loci and the recombination between the two SI loci in the starting population. Moreover, under scenario 1, it also depends on the frequency of the SI alleles that became linked. We demonstrate that, following invasion, complete transitions in the reproductive system occurs under scenario 2 and is predicted only for small populations under scenario 1. Interestingly, such events are associated with a drastic reduction in mating type number.


Asunto(s)
Basidiomycota/genética , Evolución Molecular , Genes del Tipo Sexual de los Hongos/genética , Modelos Estadísticos , Alelos , Aptitud Genética , Variación Genética , Modelos Genéticos , Filogenia , Reproducción/genética , Selección Genética
17.
PLoS One ; 7(4): e34733, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22493712

RESUMEN

Interspecific competition, life history traits, environmental heterogeneity and spatial structure as well as disturbance are known to impact the successful dispersal strategies in metacommunities. However, studies on the direction of impact of those factors on dispersal have yielded contradictory results and often considered only few competing dispersal strategies at the same time. We used a unifying modeling approach to contrast the combined effects of species traits (adult survival, specialization), environmental heterogeneity and structure (spatial autocorrelation, habitat availability) and disturbance on the selected, maintained and coexisting dispersal strategies in heterogeneous metacommunities. Using a negative exponential dispersal kernel, we allowed for variation of both species dispersal distance and dispersal rate. We showed that strong disturbance promotes species with high dispersal abilities, while low local adult survival and habitat availability select against them. Spatial autocorrelation favors species with higher dispersal ability when adult survival and disturbance rate are low, and selects against them in the opposite situation. Interestingly, several dispersal strategies coexist when disturbance and adult survival act in opposition, as for example when strong disturbance regime favors species with high dispersal abilities while low adult survival selects species with low dispersal. Our results unify apparently contradictory previous results and demonstrate that spatial structure, disturbance and adult survival determine the success and diversity of coexisting dispersal strategies in competing metacommunities.


Asunto(s)
Ecosistema , Modelos Biológicos , Biología de Sistemas , Animales , Bioestadística , Simulación por Computador , Fertilidad , Plantas , Dinámica Poblacional , Selección Genética , Tasa de Supervivencia , Factores de Tiempo
18.
Theor Popul Biol ; 78(3): 225-38, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20609370

RESUMEN

Ocean currents, prevailing winds, and the hierarchical structures of river networks are known to create asymmetries in re-colonization between habitat patches. The impacts of such asymmetries on metapopulation persistence are seldom considered, especially rarely in theoretical studies. Considering three classical models (the island, the stepping stone and the distance-dependent model), we explore how metapopulation persistence is affected by (i) asymmetry in dispersal strength, in which the colonization rate between two patches differs in direction, and (ii) asymmetry in connectivity, in which the overall colonization pattern displays asymmetry (circulating or dendritic networks). Viability can be drastically reduced when directional bias in dispersal strength is higher than 25%. Re-colonization patterns that allow for strong local connectivity provide the highest persistence compared to systems that allow circulation. Finally, asymmetry has relatively weak effects when metapopulations maintain strong general connectivity.


Asunto(s)
Ecosistema , Flujo Génico/genética , Flujo Genético , Modelos Genéticos , Dinámica Poblacional , Simulación por Computador , Humanos , Cadenas de Markov , Modelos Estadísticos
19.
Proc Biol Sci ; 277(1686): 1435-42, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20071382

RESUMEN

Understanding how new phenotypes evolve is challenging because intermediate stages in transitions from ancestral to derived phenotypes often remain elusive. Here we describe and evaluate a new mechanism facilitating the transition from sexual reproduction to parthenogenesis. In many sexually reproducing species, a small proportion of unfertilized eggs can hatch spontaneously ('tychoparthenogenesis') and develop into females. Using an analytical model, we show that if females are mate-limited, tychoparthenogenesis can result in the loss of males through a positive feedback mechanism whereby tychoparthenogenesis generates female-biased sex ratios and increasing mate limitation. As a result, the strength of selection for tychoparthenogenesis increases in concert with the proportion of tychoparthenogenetic offspring in the sexual population. We then tested the hypothesis that mate limitation selects for tychoparthenogenesis and generates female-biased sex ratios, using data from natural populations of sexually reproducing Timema stick insects. Across 41 populations, both the tychoparthenogenesis rates and the proportions of females increased exponentially as the density of individuals decreased, consistent with the idea that low densities of individuals result in mate limitation and selection for reproductive insurance through tychoparthenogenesis. Our model and data from Timema populations provide evidence for a simple mechanism through which parthenogenesis can evolve rapidly in a sexual population.


Asunto(s)
Evolución Biológica , Insectos/fisiología , Partenogénesis , Reproducción , Animales , Femenino , Insectos/genética , Masculino , Oviposición , Óvulo/fisiología , Partenogénesis/genética , Partenogénesis/fisiología , Densidad de Población , Reproducción/fisiología , Conducta Sexual Animal
20.
Genetics ; 178(1): 467-75, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18202388

RESUMEN

Extinction, recolonization, and local adaptation are common in natural spatially structured populations. Understanding their effect upon genetic variation is important for systems such as genetically modified organism management or avoidance of drug resistance. Theoretical studies on the effect of extinction and recolonization upon genetic variance started appearing in the 1970s, but the role of local adaptation still has no good theoretical basis. Here we develop a model of a haploid species in a metapopulation in which a locally adapted beneficial allele is introduced. We study the effect of different spatial patterns of local adaptation, and different metapopulation dynamics, upon the fixation probability of the beneficial allele. Controlling for the average selection pressure, we find that a small area of positive selection can significantly increase the global probability of fixation. However, local adaptation becomes less important as extinction rate increases. Deme extinction and recolonization have a spatial smoothing effect that effectively reduces spatial variation in fitness.


Asunto(s)
Alelos , Dinámica Poblacional , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...